
© November 2008 Altera Corporation Quartus II Handbook Version 8.1 Volume 4: SOPC Builder

10. SOPC Builder Component
Development Walkthrough

Introduction
This chapter describes the parts of a custom SOPC Builder component and guides you
through the process of creating an example custom component, integrating it into a
system, and testing it in hardware.

This chapter is divided into the following sections:

■ “Component Development Flow” on page 10–2.

■ “Design Example: Checksum Hardware Accelerator” on page 10–4. This design
example shows you how to develop a component with both Avalon®
Memory-Mapped (Avalon-MM) master and slaves.

■ “Sharing Components” on page 10–7. This section shows you how to use
components in other systems, or share them with other designers.

■ “.sopcinfo Files” on page 10–7.

SOPC Builder Components and the Component Editor
An SOPC Builder component is usually composed of the following four types of files:

■ HDL files—define the component’s functionality as hardware.

■ Hardware Component Description File (_hw.tcl) —describes the SOPC Builder
related characteristics, such as interface behaviors. This file is created by the
component editor.

■ C-language files—define the component register map and driver software to allow
programs to control the component.

■ Software Component Description File (_sw.tcl) file—used by the software build
tools to use and compile the component driver code.

The component editor guides you through the creation of your component. You can
then instantiate the component in an SOPC Builder system and make connections in
the same manner as other SOPC Builder components. You can also share your
component with other designers.

For information about creating the _sw.tcl file, see the Developing Device Drivers for the
Hardware Abstraction Layer chapter in the Nios II Software Developer’s Handbook.

Prerequisites
This chapter assumes that you are familiar with the following:

■ Building systems with SOPC Builder. For details, refer to the Introduction to SOPC
Builder chapter in volume 4 of the Quartus II Handbook.

■ SOPC Builder components. For details, refer to the SOPC Builder Components
chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon-MM interface.

QII54007-8.1.0

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf

10–2 Chapter 10: SOPC Builder Component Development Walkthrough
Component Development Flow

Quartus II Handbook Version 8.1 Volume 4: SOPC Builder © November 2008 Altera Corporation

Hardware and Software Requirements
To use the design example in this chapter, in addition to the current version of the
Quartus II software and Nios II Embedded Design Suite, you must have the
following:

■ Design files for the example design—A hyperlink to the design files appears next
to the chapter, SOPC Builder Component Development Walkthrough, on the SOPC
Builder literature page.

■ Nios development board and an Altera® USB-BlasterTM download cable—You can
use either of the following Nios development boards:

■ Stratix® II Edition

■ Cyclone® II Edition

If you do not have a development board, you can follow the hardware development
steps. You cannot download the complete system without a working board, but you
may be able to simulate the system.

f You can download the Quartus II Web Edition software and the Nios II EDS,
Evaluation Edition for free from the Altera Download Center at www.altera.com.

Component Development Flow
This section provides an overview of the development process for SOPC Builder
components.

Typical Design Steps
A typical development sequence for an SOPC Builder component includes the
following items:

1. Specification and definition.

a. Define the functionality of the component.

b. Determine component interfaces, such as Avalon Memory-Mapped
(Avalon-MM), Avalon Streaming (Avalon-ST), interrupt, or other interfaces.

c. Determine the component clocking requirements; what interfaces are
synchronous to what clock inputs.

d. If you want a microprocessor to control the component, determine the interface
to software, such as the register map.

2. Implement the component in VHDL or Verilog HDL.

http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com

Chapter 10: SOPC Builder Component Development Walkthrough 10–3
Component Development Flow

© November 2008 Altera Corporation Quartus II Handbook Version 8.1 Volume 4: SOPC Builder

3. Import the component into SOPC Builder.

a. Use the component editor to create a _hw.tcl file that describes the component.

b. Instantiate the component into an SOPC Builder system.

When importing an HDL file using the component editor, any parameter
definitions that are dependent upon other defined parameters cause an error.
Example 10–1 illustrates the declaration of a DEPTH parameter which is legal
Verilog HDL syntax in the Quartus II software, but causes an error in the
component editor syntax checker.

To avoid this error, use a localparam for the dependent parameter instead, as
shown in Example 10–2.

4. Develop the software driver, which can occur in parallel with the hardware
implementation. Create the component’s driver, including a C header file that
defines the hardware-level register map for software.

f For further details, see the Nios II Software Developer's Handbook.

5. Perform in-system testing, such as the following:

a. Test register-level accesses to the component in hardware or simulation using a
microprocessor, such as the Nios II processor.

b. Performance benchmarking.

Hardware Design
As with any logic design process, the development of SOPC Builder component
hardware begins after the specification phase. Creating the HDL design is often an
iterative process, as you write and verify the HDL logic against the specification.

The architecture of a typical component consists of the following functional blocks:

■ Task logic—Implements the component's fundamental function. The task logic is
design dependent.

■ Interface logic—Provides a standard way of providing data to or getting data from
the components and of controlling the functioning of the components.

f For further details, refer to the Avalon Interface Specifications.

Figure 10–1 shows the top-level blocks of a checksum component, which includes
both Avalon-MM master and slaves.

Example 10–1. DEPTH Parameter

parameter WIDTH = 32;
parameter DEPTH = ((WIDTH == 32) ? 8 : 16);

Example 10–2. localparam Parameter

parameter WIDTH = 32;
localparam DEPTH = ((WIDTH == 32)?8:16);

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

10–4 Chapter 10: SOPC Builder Component Development Walkthrough
Design Example: Checksum Hardware Accelerator

Quartus II Handbook Version 8.1 Volume 4: SOPC Builder © November 2008 Altera Corporation

f The work flow for developing SOPC Builder hardware, including how to decide upon
and implement the register map, is described in the Using the Nios II Software Build
Tools chapter in the Nios II Software Developer’s Handbook. Also, guidelines for
developing device drivers is described in the Developing Device Drivers for the
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Design Example: Checksum Hardware Accelerator
Altera has provided a checksum hardware accelerator design example to demonstrate
the steps to create a component and instantiate it in a system. This design example is
available for download from the Altera literature website. Included in the compressed
download file is a readme.pdf that describes how to create and compile the hardware
design, and describes how to use the checksum hardware accelerator in your design.

You can use the checksum algorithm in network applications where data integrity
must be inspected by the receiving device. The checksum algorithm accumulates data
with end-round-carry summation, which means that you take the carry bit and add it
to the next input. After the data is accumulated, you can use the result to verify the
data integrity of the data buffer. Because the checksum algorithm operates over a data
buffer, you can implement it more efficiently with a pipelined read master. A
pipelined read master continuously posts read transactions minimizing the effects of
the memory read latency. The checksum accelerator can read data and calculate the
checksum result every clock cycle, which you cannot do with a general purpose
processor.

The checksum hardware accelerator requires information from a host processor such
as the buffer read address, buffer length, and various control signals. As a result, the
hardware accelerator exposes an Avalon-MM slave interface so that a host processor
can control the read master operation. The host processor also accesses the checksum
result from the slave interface. Each piece of information sent or read by the host
processor is accessed separately in the register file implemented with the slave
interface. For example, the status and control signals are implemented as separate
registers because they contain information used for different purposes and have
different access capabilities.

Hardware accelerators can operate in parallel with a host processor; consequently,
adding an interrupt sender interface increases system performance. The interrupt is
asserted after the buffer checksum is calculated. The host processor can be interrupted
by the hardware accelerator to notify it that a checksum result has been calculated.
The host processor can then read the checksum value and clear the interrupt by
writing to the status register via the accelerator slave interface.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 10: SOPC Builder Component Development Walkthrough 10–5
Design Example: Checksum Hardware Accelerator

© November 2008 Altera Corporation Quartus II Handbook Version 8.1 Volume 4: SOPC Builder

Software Design
If you want a microprocessor to control your component, then you must provide
software files that define the software view of the component. At a minimum, you
must define the register map for each Avalon-MM slave that is accessible to a
processor.

Typically, the header file declares macros to read and write each register in the
component, relative to a symbolic base address assigned to the component. Table 10–1
shows the register map of the checksum component for use by the Nios II processor.

Figure 10–1. Checksum Component with Avalon-MM Master and Slaves

Checksum Accelerator

Avalon-MM
Slave

Interface

irq

clk

reset

clk

reset

go
_s

tr
ob

e

re
ad

_a
dd

re
ss

[3
1.

.0
]

re
ad

_l
en

gt
h[

31
..0

]

transform_readdata[31..0]

transform_read

transform_data_available

transform_byte_lanes

checksum_result[15..0]

checksum_invert

checksum_clear
slave_byteenable[3..0]

slave_read

slave_readdata[31..0]

slave_write

slave_writedata[31..0]

slave_address[2..0]

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ricmaster_readdatavalid

master_waitrequest

master_byteenable[3..0]

master_read

master_readdata[31..0]

master_address[31..0]

Checksum
Transform

co
nt

ro
l_

irq

Avalon-MM
Master

Interface

Clock Input
Interface

Interrupt
Slave

Interface

10–6 Chapter 10: SOPC Builder Component Development Walkthrough
Design Example: Checksum Hardware Accelerator

Quartus II Handbook Version 8.1 Volume 4: SOPC Builder © November 2008 Altera Corporation

1 In the example checksum project, you can view an example of a software driver in the
directory <projectdir>/ip/checksum_accelerator, which is the top level folder of the
hardware and software for the custom checksum block.

Software drivers abstract hardware details of the component so that software can
access the component at a high level. The driver functions provide the software an
API to access the hardware. The software requirements vary according to the needs of
the component. The most common types of routines initialize the hardware, read
data, and write data.

When developing software drivers, you should review the software files provided for
other ready-made components. The IP installer provides many components you can
use as reference. You can also view the <Nios II EDS install path>/components/
directory for examples.

f For details about writing drivers for the Nios II hardware abstraction layer (HAL),
refer to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the
Nios II Software Developer’s Handbook.

Verifying the Component
You can verify the component in incremental stages, as you complete more of the
design. You should first verify the hardware logic as a unit (which might consist of
multiple smaller stages of verification) and later verify the component in a system.

Table 10–1. Avalon-MM Slave Port Register Map (Control)

Offset Name Rd/Wr/clr Bits

31 10 9 8 7 6 5 4 3 2 1 0

0 Status Rd/Wclr Busy Done

4 Read
Address (1)

Rd/Wr Read Address (32-bit word aligned)

8 N/A

12 Length
(Bytes)

Rd/Wr Length in Bytes (must be a multiple of 4 for word aligned)

16 N/A

20 N/A

24 Control Rd/Wr RC ON I_E N GO Inv Clr

28 Checksum
Results

Rd 16-Bit Checksum Result (upper 16 bits are zeros)

N/A

28 N/A Reserved ()

N/A

Note to Table 10–1:

(1) Wr=Writable; Rd=Readable; Wclr=Write 1 to clear

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 10: SOPC Builder Component Development Walkthrough 10–7
Sharing Components

© November 2008 Altera Corporation Quartus II Handbook Version 8.1 Volume 4: SOPC Builder

System Console
The system console is an interactive Tcl console available from within SOPC Builder
that provides you with read and write access to the debugging capabilities that are
available in your FPGA logic. You can use the system console to control and query the
state of the Nios II processor, issue Avalon transactions, bring up a PCB from scratch,
and access either JTAG UARTs or system level debug (SLD) nodes.

f For further details, refer to the System Console User Guide.

System-Level Verification
After you package a _hw.tcl file with the component editor, you can instantiate the
component in a system and verify the functionality of the overall SOPC Builder
system.

SOPC Builder provides support for system-level verification for HDL simulators such
as ModelSim®. SOPC Builder automatically produces a test bench for system-level
verification.

1 You can include a Nios II processor in your system to enhance simulation capabilities
during the verification phase. Even if your component has no relationship to the
Nios II processor, the auto-generated ModelSim simulation environment provides an
easy-to-use starting point.

Sharing Components
When you create a component, component editor saves the _hw.tcl file in the same
directory as the top-level HDL file. Where appropriate, files referenced by the _hw.tcl
file are specified relative to the _hw.tcl file itself, so the files can easily be moved and
copied. To share a component, include it in your IP library.

For more information about including components in an IP library refer to Finding
Components in SOPC Builder in Chapter 4: SOPC Builder Components in volume 4 of the
Quartus II Handbook.

.sopcinfo Files
Every time SOPC Builder generates a system, a <mysystem>.sopcinfo file is also
generated, which contains the information described below.

■ SOPC Builder project, including:

■ Name and tool version

■ HDL language

■ Each module instantiated in the system, including:

■ Name and version

■ Where interface information was found on the disk, such as signal names and
types, interface properties, and clock domain mapping

■ Parameter names and values

http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf

10–8 Chapter 10: SOPC Builder Component Development Walkthrough
Referenced Documents

Quartus II Handbook Version 8.1 Volume 4: SOPC Builder © November 2008 Altera Corporation

■ Each connection, including:

■ Component and interface connections

■ Base address, Avalon-MM interfaces, IRQ number interfaces

■ Memory map as seen by each master in the system

1 The .sopcinfo file is a report file only, and cannot be edited with SOPC Builder.

Referenced Documents
This chapter references the following documents:

■ Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

■ Introduction to SOPC Builder chapter in volume 4 of the Quartus II Handbook

■ SOPC Builder Components chapter in volume 4 of the Quartus II Handbook

■ System Console User Guide

■ Using the Nios II Software Build Tools chapter in the Nios II Software Developer’s
Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 10: SOPC Builder Component Development Walkthrough 10–9
Document Revision History

© November 2008 Altera Corporation Quartus II Handbook Version 8.1 Volume 4: SOPC Builder

Document Revision History
Table 10–2 shows the revision history for this chapter.

Table 10–2. Document Revision History

Date and Document Version Changes Made Summary of Changes

November 2008, v8.1.0 ■ Added reference to new search path for IP chapter 4
of this volume.

■ Correction direction of signals in Figure 10–1.

■ Changed page size to 8.5 x 11 inches.

One correction and one change
to reflect changes in underlying
software.

May 2008, v8.0.0 ■ Chapter renumbered from 9 to 10.

■ Removed discussion of the Checksum Design
example, which will now be in a readme.pdf file and
zipped with the rest of the design files.

■ Deleted references to Avalon Memory-Mapped and
Streaming Interface Specifications and changed to
Avalon Interface Specifications.

■ New Figure 9-1 and Table 9-1.

■ New section on .sopcinfo file.

Deleted example procedure.

October 2007, v7.2.0 Updated instructions on how to develop components to
match new GUI.

—

May 2007,

v7.1.0

Changed example component from a pulse width
modulator with that only has an Avalon-MM slave
interface to a checksum master that includes both
Avalon-MM master and slave interfaces.

Changed the example design to
one with more practical
applications. Updated
instructions for the 7.1 release.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

Chapter 9 was previously chapter 10. No change to
content.

—

May 2006,
v6.0.0

Chapter 10 was previously chapter 9. No change to
content.

—

October 2005,
v5.1.0

Chapter 9 was previously chapter 7. No change to
content.

—

August 2005,
v5.0.1

Corrected Table 7-5. —

May 2005,
v5.0.0

No change from previous release. —

February 2005,
v1.0

Initial release. —

10–10 Chapter 10: SOPC Builder Component Development Walkthrough
Document Revision History

Quartus II Handbook Version 8.1 Volume 4: SOPC Builder © November 2008 Altera Corporation

	10. SOPC Builder Component Development Walkthrough
	Introduction
	SOPC Builder Components and the Component Editor
	Prerequisites
	Hardware and Software Requirements

	Component Development Flow
	Typical Design Steps
	Hardware Design

	Design Example: Checksum Hardware Accelerator
	Software Design
	Verifying the Component
	System Console
	System-Level Verification

	Sharing Components
	.sopcinfo Files
	Referenced Documents
	Document Revision History

